Carlos Sierra's Tools and Tips

Tools and Tips for Oracle Performance and SQL Tuning

Archive for the ‘Plan Stability’ Category

Adapting and adopting SQL Plan Management (SPM)

with 2 comments

Introduction

This post is about: “Adapting and adopting SQL Plan Management (SPM) to achieve execution plan stability for sub-second queries on a high-rate OLTP mission-critical application”. In our case, such an application is implemented on top of several Oracle 12c multi tenant databases, where a consistent average execution time is more valuable than flexible execution plans. We successfully achieved plan stability implementing a simple algorithm using PL/SQL calling DBMS_SPM public APIs.

Chart below depicts a typical case where the average performance of a large set of business-critical SQL statements suddenly degraded from sub-millisecond to 15 or 20ms, then beccome more stable around 3ms. Wide spikes are a typical trademark of an Execution Plan for one or more SQL statements flipping for some time. In order to produce a more consistent latency we needed to improve plan stability, and of course the preferred tool to achieve that on an Oracle database is SQL Plan Management.

Algorithm

We tested and ruled out adaptive SQL Plan Management, which is an excellent 12c new feature. But, due to the dynamics of this application, where transactional data shifts so fast, allowing this “adaptive SPM” feature to evaluate auto-captured plans using bind variable values captured a few hours earlier, rendered unfortunately false positives. These false positives “evolved” as execution plans that were numerically optimal for values captured (at the time the candidate plan was captured), but performed poorly when executed on “current” values a few hours later. Nevertheless, this 12c “adaptive SPM” new feature is worth exploring for other applications.

We adapted SPM so it would only generate SQL Plan Baselines on SQL that executes often, and that is critical for the business. The algorithm has some complexity such as candidate evaluation and SQL categorization; and besides SPB creation it also includes plan demotion and plan promotion. We have successfully implemented it in some PDBs and we are currently doing a rollout to entire CDBs. The algorithm is depicted on diagram on the left, and more details are included in corresponding presentation slides listed on the right-hand bar. I plan to talk about this topic on an international Oracle Users Group in 2018.

This algorithm is scripted into a sample PL/SQL package, which you can find on a subdirectory on my shared scripts. If you consider using this sample script for an application of your own, be sure you make it yours before attempting to use it. In other words: fully understand it first, then proceed to customize it accordingly and test it thoroughly.

Results

Chart below shows how average performance of business-critical SQL became more stable after implementing algorithm to adapt and adopt SPM on a pilot PDB. Not all went fine although: we had some outliers that required some tuning to the algorithm. Among challenges we faced: volatile data (creating a SPB when table was almost empty, then using it when table was larger); skewed values (create a SPB for non-popular value, then using it on a popular value); proper use of multiple optimal plans due to Adaptive Cursor Sharing (ACS); rejected candidates due to conservative initial restrictions on algorithm (performance per execution, number of executions, age of cursor, etc.)

Conclusion

If your OLTP application contains business critical SQL that executes at a high-rate, and where a spike on latency risks affecting SLAs, you may want to consider implementing SQL Plan Management. Consider then both: “adaptive SPM” if it satisfies your requirements, else build a PL/SQL library that can implement more complex logic for candidates evaluation and for SPBs maintenance. I do believe SPM works great, specially when you enhance its out-of-the-box functionality to satisfy your specific needs.

 

 

Advertisements

Written by Carlos Sierra

December 20, 2017 at 6:32 pm

Creating a SQL Plan Baseline from Cursor Cache or AWR

with 16 comments

A DBA deals with performance issues often, and having a SQL suddenly performing poorly is common. What do we do? We proceed to “pin” an execution plan, then investigate root cause (the latter is true if time to next fire permits).

DBMS_SPM provides some APIs to create a SQL Plan Baseline (SPB) from the Cursor Cache, or from a SQL Tuning Set (STS), but not from the Automatic Workload Repository (AWR). For the latter, you need a two-steps approach: create a STS from AWR, then load a SPB from the STS. Fine, except when your next fire is waiting for you, or when deciding which is the “best” plan is not trivial.

Take for example chart below, which depicts multiple execution plans with different performance for one SQL statement. The SQL statement is actually quite simple, and data is not significantly skewed. On this particular application, usually one-size-fits-all (meaning one-and-only-one plan) works well for most values passed on variable place holders. Then, which plan would you choose?

Sample chart created by SQLd360

Looking at summary of known Execution Plans’ performance below (as reported by planx.sql), we can see the same 6 Execution Plans.

1st Plan on list shows an average execution time of 2.897ms according to AWR, and 0.896ms according to Cursor Cache; and number of recorded executions for this Plan are 2,502 and 2,178 respectively. We see this Plan contains one Nested Loop, and if we look at historical performance we notice this Plan takes less than 109ms 95% of the time, less than 115ms 97% of the time, and less then 134ms 99% of the time. We also see that worst recorded AWR period, had this SQL performing in under 150ms (on average for that one period).

We also notice that last plan on list performs one execution in 120.847ms on average (as per AWR) and 181.113ms according to Cursor Cache (on average as well). Then, “pinning” 1st plan on list seems like a good choice, but not too different than all but last plan, specially when we consider both: average performance and historical performance according to percentiles reported.

PLANS PERFORMANCE
~~~~~~~~~~~~~~~~~

       Plan ET Avg      ET Avg      CPU Avg     CPU Avg           BG Avg       BG Avg   Executions   Executions                                   ET 100th    ET 99th     ET 97th     ET 95th     CPU 100th   CPU 99th    CPU 97th    CPU 95th
 Hash Value AWR (ms)    MEM (ms)    AWR (ms)    MEM (ms)             AWR          MEM          AWR          MEM   MIN Cost   MAX Cost  NL  HJ  MJ Pctl (ms)   Pctl (ms)   Pctl (ms)   Pctl (ms)   Pctl (ms)   Pctl (ms)   Pctl (ms)   Pctl (ms)
----------- ----------- ----------- ----------- ----------- ------------ ------------ ------------ ------------ ---------- ---------- --- --- --- ----------- ----------- ----------- ----------- ----------- ----------- ----------- -----------
 4113179674       2.897       0.896       2.715       0.714           96            5        2,502        2,178          8        738   1   0   0     149.841     133.135     114.305     108.411     147.809     133.007     113.042     107.390
  578709260      29.576      32.704      28.865      31.685        1,583        1,436        6,150        1,843         67        875   1   0   0     154.560      84.264      65.409      57.311     148.648      75.209      62.957      56.305
 1990606009      74.399      79.054      73.163      77.186        1,117        1,192          172          214        905      1,108   0   1   0     208.648     208.648      95.877      95.351     205.768     205.768      94.117      93.814
 1242077371      77.961                  77.182                    1,772                     8,780                     949      1,040   0   1   0     102.966      98.206      91.163      89.272     100.147      97.239      90.165      88.412
 2214147219      79.650      82.413      78.242      80.817        1,999        2,143       42,360       24,862        906      1,242   0   1   0     122.535     101.293      98.442      95.737     119.240      99.118      95.266      93.156
 1214505235     120.847     181.113     105.485     162.783          506        1,355           48           12        114        718   1   0   0     285.950     285.950     285.950     285.950     193.954     193.954     193.954     193.954

Plans performance summary above is displayed in a matter of seconds by planx.sql, sqlperf.sql and by a new script create_sql_plan_baseline.sql. This output helps make a quick decision about which Execution Plan is better for “pinning”, meaning: to create a SPB on it.

Sometimes such decision is not that trivial, as we can see on sample below. Which plan is better? I would go with 2nd on list. Why? performance-wise this plan is more stable. It does a Hash Join, so I am expecting to see a Plan with full scans, but if I can get consistent executions under 0.4s (according to percentiles), I would be tempted to “pin” this 2nd Plan instead of 1st one. And I would stay away from 3rd and 5th. So maybe I would create a SPB with 3 plans instead of just one, and include on this SPB 1st, 2nd and 4th on the list.

PLANS PERFORMANCE
~~~~~~~~~~~~~~~~~

       Plan ET Avg      ET Avg      CPU Avg     CPU Avg           BG Avg       BG Avg   Executions   Executions                                   ET 100th    ET 99th     ET 97th     ET 95th     CPU 100th   CPU 99th    CPU 97th    CPU 95th
 Hash Value AWR (ms)    MEM (ms)    AWR (ms)    MEM (ms)             AWR          MEM          AWR          MEM   MIN Cost   MAX Cost  NL  HJ  MJ Pctl (ms)   Pctl (ms)   Pctl (ms)   Pctl (ms)   Pctl (ms)   Pctl (ms)   Pctl (ms)   Pctl (ms)
----------- ----------- ----------- ----------- ----------- ------------ ------------ ------------ ------------ ---------- ---------- --- --- --- ----------- ----------- ----------- ----------- ----------- ----------- ----------- -----------
 1917891576       0.467       0.334       0.330       0.172          119           33  554,914,504   57,748,249          6      1,188   2   0   0   6,732.017      10.592       1.628       1.572   1,420.864       1.557       1.482       1.261
   99953997       1.162       2.427       0.655       0.492           83           55   58,890,160    2,225,247         12      2,311   0   1   0     395.819     235.474     108.142      34.909      56.008      22.329      12.926       3.069
 3559532534       1.175   1,741.041       0.858      91.486          359           46   21,739,877          392          4         20   1   0   0  89,523.768   4,014.301     554.740     298.545  21,635.611     216.456      54.050      30.130
 3650324870       2.028      20.788       1.409       2.257          251          199   24,038,404      143,819         11      5,417   0   1   0     726.964     254.245      75.322      20.817     113.259      21.211      13.591       8.486
 3019880278      43.465                  43.029                   20,217                    13,349                   5,693      5,693   0   1   0      43.465      43.465      43.465      43.465      43.029      43.029      43.029      43.029

About new script create_sql_plan_baseline.sql

This new script is a life-saver for us, since our response time for an alert is usually measured in minutes, with a resolution (and sometimes a root cause analysis) expected in less than one hour from the time the incident is raised.

This script is quite simple:

  • it provides a list of known Execution Plans including current (Cursor Cache) and historical (AWR) performance as displayed in two samples above, then
  • asks on which Plan Hash Values (PHVs) you want to create a SPB on. It allows you to enter up to 3 PHVs; last
  • asks if you want these plans to be set as FIXED

After you respond to ACCEPT parameters, then a SPB for your SQL is created and displayed. It does not matter if the Plan exists on Cursor Cache and/or on AWR, it finds the Plan and creates the SPB for you. Then: finding known Execution Plans, deciding which one is a better choice (or maybe more than one), and creating a SPB, all can be done very rapidly.

If you still prefer to use SQL Profiles and not SPBs for whatever reason, script coe_xfr_sql_profile.sql is still around and updated. On these 12c days, and soon 18c and beyond, I’d much rather use SQL Plan Management and create SPBs although!

Anyways, enjoy these free scripts and become a faster hero “pinning” good plans. Then don’t forget to do diligent root cause analysis afterwards. I use SQLd360 by Mauro Pagano for deep understanding of what is going on with my SQL statements.

Soon, I will post about a cool free tool that automates the implementation of SQL Plan Management on a high-rate OLTP where stability is more important than flexibility (frequently changing Execution Plans). Stay tuned!

Written by Carlos Sierra

December 1, 2017 at 6:32 am

Purging a cursor in Oracle – revisited

leave a comment »

A few years ago I created a post about “how to flush a cursor out the shared pool“, using DBMS_SHARED_POOL.PURGE. For the most part, this method has helped me to get rid of an entire parent cursor and all child cursors for a given SQL, but more often than not I have found than on 12c this method may not work, leaving active a set of cursors I want to flush.

Script below is an enhanced version, where besides using DBMS_SHARED_POOL.PURGE, we also create a dummy SQL patch, then drop it. This method seems to completely flush parent and child cursors. Why using this method instead?: We are implementing SQL Plan Management (SPM), and we have found that in some cases, some child cursors are still shared several hours after a SQL Plan Baseline (SPB) is created. We could argue a possible bug and pursue as such, but in the meantime my quick and dirty workaround is: whenever I want to flush an individual parent cursor for one SQL, and all of its child cursors, I just execute script below passing SQL_ID.

Anyways, just wanted to share and document this purge_cursor.sql script for those in similar need. I have developed it on 12.1.0.2, and haven’t tested it on lower or higher versions.

-- purge_cursor.sql
DECLARE
 l_name VARCHAR2(64);
 l_sql_text CLOB;
BEGIN
 -- get address, hash_value and sql text
 SELECT address||','||hash_value, sql_fulltext 
 INTO l_name, l_sql_text 
 FROM v$sqlarea 
 WHERE sql_id = '&&sql_id.';
 -- not always does the job
 SYS.DBMS_SHARED_POOL.PURGE (
 name => l_name,
 flag => 'C',
 heaps => 1
 );
 -- create fake sql patch
 SYS.DBMS_SQLDIAG_INTERNAL.I_CREATE_PATCH (
 sql_text => l_sql_text,
 hint_text => 'NULL',
 name => 'purge_&&sql_id.',
 description => 'PURGE CURSOR',
 category => 'DEFAULT',
 validate => TRUE
 );
 -- drop fake sql patch
 SYS.DBMS_SQLDIAG.DROP_SQL_PATCH (
 name => 'purge_&&sql_id.', 
 ignore => TRUE
 );
END;
/

Written by Carlos Sierra

November 22, 2017 at 5:55 am

Poor’s man script to summarize reasons WHY cursors are not shared

with 5 comments

Having a large number of child cursors can affect parsing performance as hinted by Abel Macias on his blog post about Diagnosis of a High Version Count (HVC). On his post, Abel also refers to a note on MOS which includes a script that dives into the reasons WHY our cursors are not getting shared. Then, for deep-dives in this area, I strongly suggest to read his post and use the referenced script provided at MOS.

Besides longer parse times, and potential library cache contention, manifested by some waits (such as on mutex), there is another side effect that may bite us: CBO may produce a different plan when a SQL statement is hard-parsed while creating a new child cursor. This latter side effect can be critical for transactional applications with SLA depending on very short latencies of some queries.

This post is about a poor’s man script, that with no installation whatsoever, it lists an aggregated summary of the reasons why our cursors are not shared, including child cursor counts and distinct SQL_IDs counts for each reason (see sample output below). I had to write such script since in our environments we cannot simply run diagnostics scripts that create objects in the database, such as the one provided by MOS.

   CURSORS    SQL_IDS REASON_NOT_SHARED
---------- ---------- -----------------------------
    226916       7826 ROLL_INVALID_MISMATCH
     29387        105 BIND_EQUIV_FAILURE
     21794       4027 HASH_MATCH_FAILED
     11588       2134 OPTIMIZER_MISMATCH
     11027        413 BIND_LENGTH_UPGRADEABLE
     11008        384 BIND_MISMATCH
     10125       2697 USE_FEEDBACK_STATS
      4540        109 OPTIMIZER_MODE_MISMATCH
      1652         72 PURGED_CURSOR
      1245         81 BIND_UACS_DIFF
      1062        316 LANGUAGE_MISMATCH
       771        103 LOAD_OPTIMIZER_STATS
       500         52 STATS_ROW_MISMATCH
       238         86 MV_QUERY_GEN_MISMATCH
        94          3 MULTI_PX_MISMATCH
        28          4 AUTH_CHECK_MISMATCH
        23          1 INSUFF_PRIVS

Once I get to see some reasons for not sharing, some responsible for a large number of child cursors (and distinct SQL_IDs), then I can search on MOS as Abel suggested. Ideally, if you are interested in plan stability, you may want to reduce the times the CBO is tasked to create a new child cursor (and potentially a new Execution Plan).

In output sample above, top in our list is ROLL_INVALID_MISMATCH, causing 226,916 child cursors in as many as 7,826 SQL statements. This particular reason for not sharing cursors is due to a persistent gathering of schema object statistics with the explicit request to invalidate cursors. Since we want to promote plan stability, we would need to suspend such aggressive gathering of CBO statistics and validate reason ROLL_INVALID_MISMATCH is reduced.

Anyways, free script used is below. Enjoy it!

*** edited *** a new version of the script is now available (below). Thanks to stewashton for his input.

-- sql_shared_cursor.sql
SET HEA OFF LIN 300 NEWP NONE PAGES 0 FEED OFF ECHO OFF VER OFF TRIMS ON TRIM ON TI OFF TIMI OFF SQLBL ON BLO . RECSEP OFF;
SPO all_reasons.sql
SELECT CASE WHEN ROWNUM = 1 THEN '( ' ELSE ', ' END||column_name
  FROM dba_tab_columns
 WHERE table_name = 'V_$SQL_SHARED_CURSOR'
   AND owner = 'SYS'
   AND data_type = 'VARCHAR2'
   AND data_length = 1
/
SPO OFF;
GET all_reasons.sql
I )
I )
I WHERE value = 'Y'
I GROUP BY reason_not_shared
I ORDER BY cursors DESC, sql_ids DESC, reason_not_shared
0 ( value FOR reason_not_shared IN 
0 FROM v$sql_shared_cursor UNPIVOT
0 SELECT COUNT(*) cursors, COUNT(DISTINCT sql_id) sql_ids, reason_not_shared
L
SET HEA ON NEWP 1 PAGES 30
PRO please wait
/
!rm all_reasons.sql

Written by Carlos Sierra

September 1, 2017 at 1:01 pm

Forcing a “Nested Loop only” Execution Plan

with 5 comments

Sometimes you do what you have to do. So here I confess doing something I usually avoid: forcing an Execution Plan (which is not the same as using a more conventional method for Plan stability).

This is a case on 11.2.0.3.0 base release where the application vendor sets the optimizer to 9i, and tweaks other CBO parameters in questionable ways, then some queries produce suboptimal plans (as expected); and you are called to help without changing the obvious.

There is a family of queries from an ad-hoc query generator that permits users to issue queries without a set of selective predicates. These queries join several large tables and their performance is poor (as expected as well!). On top of the previous, all these queries include the /*+ FIRST_ROWS */ CBO Hint and the questionable DISTINCT keyword. Note: it is quite common for developers to throw a DISTINCT keyword “to avoid duplicates” where the mere existence of duplicates would be an indication of an application bug; so “why fix it if I can hide it, right?”.

There is one caveat although: these queries include a generic predicate “rownum <= :b1”, and value passed defaults to 5000, so users rationale is “if I only want the first X rows my query should return fast”. This highlights still another questionable practice since it is hard to imagine a user scrolling 5000 rows and making any sense of such large set, especially when the full “filtered” set would be several million rows long. So the original problem is questionable in several ways. Nevertheless, sometimes we are called to help besides providing advice. And no, we are not allowed to slap hands 😉

The good news is that we can use this extra predicate on rownum and make these queries to return the first X rows really fast; and I mean less than 5 seconds instead of over one hour or more! And if users want not 5000 but 500 or even 50 rows, then we can be in the sub-second range!

You may be thinking FIRST_ROWS optimization, and that was my first try. Unfortunately, on 11.2.0.3.0, even reversing all the suboptimal CBO parameters at the session level, I would consistently get an Execution Plan with a few Hash Joins and a large Cost; and if I were to force a Nested Loop Plan, the cost would be several orders of magnitude larger so the CBO would not pick it! Nevertheless, such a “Nest Loop only” Execution Plan would fulfill the user’s expectations, regardless the validity of the initial request. And yes, CBO statistics are OK, not perfect but simply OK. One more piece of info: this is not Exadata! (if it were Exadata most probably these same Execution Plans with full table scans and Hash Joins would simply fly!).

So, my issue became: How do I force an Execution Plan that only contains Nested Loops? If I could do that, then the COUNT STOP operation could help me to halt my SQL execution once I fetched the first X rows (Hash Join does not allow me do that). Remember: these tables have literally millions of rows. I could pepper these queries with a ton of CBO Hints and I would get my desired “Nested Loop only” Execution Plan… But that would be a lot of work and tricky at best.

SQL Patch to the rescue

I could had used a SQL Profile, but I think this dirty trick of suppressing Hash Joins and Sort Merge Joins, would be better served with a SQL Patch. I also thought Siebel: They do tweak CBO parameters as well, and they suppress Hash Joins, but they change System and Session level parameters… Since I wanted my change to be very localized, SQL Patch could provide me just what I needed.

Under the Downloads section on the margin of this page, there is a “cscripts” link that includes the sqlpch.sql script. I used this script and passed as the second parameter the following string (1st parameter is SQL_ID). With a SQL Patch generated this way, I could systematically produce a “Nested-Loops only” Execution Plan for these few queries. I did not have to change the original SQL, nor change the CBO environment at the System or Session level, neither restrict the query generator, and I did not had to “educate” the users to avoid such unbounded queries.

OPT_PARAM("_optimizer_sortmerge_join_enabled" "FALSE") OPT_PARAM("_hash_join_enabled" "FALSE")

Conclusion

I have to concede doing something questionable, in this case using a SQL Patch to force a desired Execution Plan instead of fixing the obvious, simply because that was the shortest path to alleviate the user’s pain.

I consider this technique above a temporary work-around and not a solution to the actual issue. In this case the right way to handle this issue would be:

  1. Have the application vendor certify their application to the latest release of the database and reset all CBO related parameters, plus
  2. Have the application vendor remove CBO Hints and DISTINCT keyword from queries, plus
  3. Configure the ad-hoc query generator to restrict users from executing queries without selective predicates, then
  4. Tune those outlier queries that may still need some work to perform as per business requirements, and possibly
  5. Educate the users to provide as many selective predicates as possible

Anyways, the potential of using a SQL Patch to tweak an Execution Plan in mysterious ways is quite powerful, and something we may want to keep in the back of our minds for a rainy day…

Written by Carlos Sierra

August 8, 2015 at 8:30 am

Discovering if a System level Parameter has changed its value (and when it happened)

with 4 comments

Quite often I learn of a system where “nobody changed anything” and suddenly the system is experiencing some strange behavior. Then after diligent investigation it turns out someone changed a little parameter at the System level, but somehow disregarded mentioning it since he/she thought it had no connection to the unexpected behavior.  As we all know, System parameters are big knobs that we don’t change lightly, still we often see “unknown” changes like the one described.

Script below produces a list of changes to System parameter values, indicating when a parameter was changed and from which value into which value. It does not filter out cache re-sizing operations, or resource manager plan changes. Both would be easy to exclude, but I’d rather see those global changes listed as well.

Note: This script below should only be executed if your site has a license for the Oracle Diagnostics pack (or Tuning pack), since it reads from AWR.

WITH
all_parameters AS (
SELECT snap_id,
       dbid,
       instance_number,
       parameter_name,
       value,
       isdefault,
       ismodified,
       lag(value) OVER (PARTITION BY dbid, instance_number, parameter_hash ORDER BY snap_id) prior_value
  FROM dba_hist_parameter
)
SELECT TO_CHAR(s.begin_interval_time, 'YYYY-MM-DD HH24:MI') begin_time,
       TO_CHAR(s.end_interval_time, 'YYYY-MM-DD HH24:MI') end_time,
       p.snap_id,
       p.dbid,
       p.instance_number,
       p.parameter_name,
       p.value,
       p.isdefault,
       p.ismodified,
       p.prior_value
  FROM all_parameters p,
       dba_hist_snapshot s
 WHERE p.value != p.prior_value
   AND s.snap_id = p.snap_id
   AND s.dbid = p.dbid
   AND s.instance_number = p.instance_number
 ORDER BY
       s.begin_interval_time DESC,
       p.dbid,
       p.instance_number,
       p.parameter_name
/

Sample output follows, where we can see a parameter affecting Degree of Parallelism was changed. This is just to illustrate its use. Enjoy this new free script! It is now part of edb360.
Screen Shot 2015-03-25 at 19.15.26

Written by Carlos Sierra

March 25, 2015 at 7:25 pm

Creating a SQL Plan Baseline out of a modified SQL

with 5 comments

While delivering a session at KSCOPE 14, I was asked a very good question: Can I create a SQL Plan Baseline for an Original SQL out of a Modified SQL? In other words, query Q1, which performs poorly, has SQL_ID1 and SQL_HANDLE1 with a poorly performing Execution Plan with Hash Value PHV1. With a small modification to this query, like adding a CBO Hint or removing one, we obtain query Q2, which performs well, and has SQL_ID2, SQL_HANDLE2 and PHV2. So what we want it to associate PHV2 to SQL_ID1. The questions is: how do we do that with an API?

Maria Colgan explains on this blog how to manually do exactly what is requested above. So the question becomes: can we do this manual procedure with an easy to use API?

Script coe_load_sql_baseline.sql below inputs SQL_ID1, SQL_ID2 and PHV2, which correspond to the Original SQL_ID, the Modified SQL_ID and the Plan Hash Value from the Modified SQL (it could have more than one plan); then it produces a SQL Plan Baseline for the Original SQL out of the Execution Plan of the Modified SQL. By doing this we can “fix” a Query performing poorly by attaching to it a good performing Execution Plan that was produced by making a small temporary change to the Original SQL, like adding or removing a small set of CBO Hints. So we can generate good Execution Plans without actually changing the application.

Script coe_load_sql_baseline.sql is provided inside SQLT (MOS 215187.1) under sqlt/utl directory. Use always the latest version. As of June 2014 the latest version is the one below. This script does not require to install SQLT.

SPO coe_load_sql_baseline.log;
SET DEF ON TERM OFF ECHO ON FEED OFF VER OFF HEA ON LIN 2000 PAGES 100 LONG 8000000 LONGC 800000 TRIMS ON TI OFF TIMI OFF SERVEROUT ON SIZE 1000000 NUM 20 SQLP SQL>;
SET SERVEROUT ON SIZE UNL;
REM
REM $Header: 215187.1 coe_load_sql_baseline.sql 11.4.5.8 2013/05/10 carlos.sierra $
REM
REM Copyright (c) 2000-2013, Oracle Corporation. All rights reserved.
REM
REM AUTHOR
REM   carlos.sierra@oracle.com
REM
REM SCRIPT
REM   coe_load_sql_baseline.sql
REM
REM DESCRIPTION
REM   This script loads a plan from a modified SQL into the SQL
REM   Plan Baseline of the original SQL.
REM   If a good performing plan only reproduces with CBO Hints
REM   then you can load the plan of the modified version of the
REM   SQL into the SQL Plan Baseline of the orignal SQL.
REM   In other words, the original SQL can use the plan that was
REM   generated out of the SQL with hints.
REM
REM PRE-REQUISITES
REM   1. Have in cache or AWR the text for the original SQL.
REM   2. Have in cache the plan for the modified SQL
REM      (usually with hints).
REM
REM PARAMETERS
REM   1. ORIGINAL_SQL_ID (required)
REM   2. MODIFIED_SQL_ID (required)
REM   3. PLAN_HASH_VALUE (required)
REM
REM EXECUTION
REM   1. Connect into SQL*Plus as user with access to data dictionary
REM      and privileges to create SQL Plan Baselines. Do not use SYS.
REM   2. Execute script coe_load_sql_baseline.sql passing first two
REM      parameters inline or until requested by script.
REM   3. Provide plan hash value of the modified SQL when asked.
REM
REM EXAMPLE
REM   # sqlplus system
REM   SQL> START coe_load_sql_baseline.sql gnjy0mn4y9pbm b8f3mbkd8bkgh
REM   SQL> START coe_load_sql_baseline.sql;
REM
REM NOTES
REM   1. This script works on 11g or higher.
REM   2. For a similar script for 10g use coe_load_sql_profile.sql,
REM      which uses custom SQL Profiles instead of SQL Baselines.
REM   3. For possible errors see coe_load_sql_baseline.log
REM   4. Use a DBA user but not SYS. Do not connect as SYS as the staging
REM      table cannot be created in SYS schema and you will receive an error:
REM      ORA-19381: cannot create staging table in SYS schema
REM
SET TERM ON ECHO OFF;
PRO
PRO Parameter 1:
PRO ORIGINAL_SQL_ID (required)
PRO
DEF original_sql_id = '&1';
PRO
PRO Parameter 2:
PRO MODIFIED_SQL_ID (required)
PRO
DEF modified_sql_id = '&2';
PRO
WITH
p AS (
SELECT DISTINCT plan_hash_value
  FROM gv$sql_plan
 WHERE sql_id = TRIM('&&modified_sql_id.')
   AND other_xml IS NOT NULL ),
m AS (
SELECT plan_hash_value,
       SUM(elapsed_time)/SUM(executions) avg_et_secs
  FROM gv$sql
 WHERE sql_id = TRIM('&&modified_sql_id.')
   AND executions > 0
 GROUP BY
       plan_hash_value )
SELECT p.plan_hash_value,
       ROUND(m.avg_et_secs/1e6, 3) avg_et_secs
  FROM p, m
 WHERE p.plan_hash_value = m.plan_hash_value
 ORDER BY
       avg_et_secs NULLS LAST;
PRO
PRO Parameter 3:
PRO PLAN_HASH_VALUE (required)
PRO
DEF plan_hash_value = '&3';
PRO
PRO Values passed to coe_load_sql_baseline:
PRO ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PRO ORIGINAL_SQL_ID: "&&original_sql_id."
PRO MODIFIED_SQL_ID: "&&modified_sql_id."
PRO PLAN_HASH_VALUE: "&&plan_hash_value."
PRO
WHENEVER SQLERROR EXIT SQL.SQLCODE;
SET TERM OFF ECHO ON;

-- trim parameters
COL original_sql_id NEW_V original_sql_id FOR A30;
COL modified_sql_id NEW_V modified_sql_id FOR A30;
COL plan_hash_value NEW_V plan_hash_value FOR A30;
SELECT TRIM('&&original_sql_id.') original_sql_id, TRIM('&&modified_sql_id.') modified_sql_id, TRIM('&&plan_hash_value.') plan_hash_value FROM DUAL;

-- open log file
SPO coe_load_sql_baseline_&&original_sql_id..log;
GET coe_load_sql_baseline.log;
.

-- get user
COL connected_user NEW_V connected_user FOR A30;
SELECT USER connected_user FROM DUAL;

VAR sql_text CLOB;
VAR plan_name VARCHAR2(30);
EXEC :sql_text := NULL;
EXEC :plan_name := NULL;

-- get sql_text from memory
BEGIN
  SELECT REPLACE(sql_fulltext, CHR(00), ' ')
    INTO :sql_text
    FROM gv$sqlarea
   WHERE sql_id = TRIM('&&original_sql_id.')
     AND ROWNUM = 1;
EXCEPTION
  WHEN OTHERS THEN
    DBMS_OUTPUT.PUT_LINE('getting original sql_text from memory: '||SQLERRM);
    :sql_text := NULL;
END;
/

-- get sql_text from awr
BEGIN
  IF :sql_text IS NULL OR NVL(DBMS_LOB.GETLENGTH(:sql_text), 0) = 0 THEN
    SELECT REPLACE(sql_text, CHR(00), ' ')
      INTO :sql_text
      FROM dba_hist_sqltext
     WHERE sql_id = TRIM('&&original_sql_id.')
       AND sql_text IS NOT NULL
       AND ROWNUM = 1;
  END IF;
EXCEPTION
  WHEN OTHERS THEN
    DBMS_OUTPUT.PUT_LINE('getting original sql_text from awr: '||SQLERRM);
    :sql_text := NULL;
END;
/

-- sql_text as found
SELECT :sql_text FROM DUAL;

-- check is sql_text for original sql is available
SET TERM ON;
BEGIN
  IF :sql_text IS NULL THEN
    RAISE_APPLICATION_ERROR(-20100, 'SQL_TEXT for original SQL_ID &&original_sql_id. was not found in memory (gv$sqlarea) or AWR (dba_hist_sqltext).');
  END IF;
END;
/

-- check phv is found
DECLARE
  l_count NUMBER;
BEGIN
  SELECT COUNT(*)
    INTO l_count
    FROM gv$sql
   WHERE sql_id = TRIM('&&modified_sql_id.')
     AND plan_hash_value = TO_NUMBER(TRIM('&&plan_hash_value.'));

   IF l_count = 0 THEN
     RAISE_APPLICATION_ERROR(-20110, 'PHV &&plan_hash_value. for modified SQL_ID &&modified_sql_id. was not be found in memory (gv$sql).');
   END IF;
END;
/

SET ECHO OFF;
DECLARE
  plans NUMBER;
  description VARCHAR2(500);
  sys_sql_handle VARCHAR2(30);
  sys_plan_name VARCHAR2(30);
BEGIN
  -- create sql_plan_baseline for original sql using plan from modified sql
  plans :=
  DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE (
    sql_id          => TRIM('&&modified_sql_id.'),
    plan_hash_value => TO_NUMBER(TRIM('&&plan_hash_value.')),
    sql_text        => :sql_text );
  DBMS_OUTPUT.PUT_LINE('Plans Loaded: '||plans);

  -- find handle and plan_name for sql_plan_baseline just created
  SELECT sql_handle, plan_name
    INTO sys_sql_handle, sys_plan_name
    FROM dba_sql_plan_baselines
   WHERE creator = USER
     AND origin = 'MANUAL-LOAD'
     AND created = ( -- past 1 minute only
  SELECT MAX(created) max_created
    FROM dba_sql_plan_baselines
   WHERE creator = USER
     AND origin = 'MANUAL-LOAD'
     AND created > SYSDATE - (1/24/60));
  DBMS_OUTPUT.PUT_LINE('sys_sql_handle: "'||sys_sql_handle||'"');
  DBMS_OUTPUT.PUT_LINE('sys_plan_name: "'||sys_plan_name||'"');

  -- update description of new sql_plan_baseline
  description := UPPER('original:'||TRIM('&&original_sql_id.')||' modified:'||TRIM('&&modified_sql_id.')||' phv:'||TRIM('&&plan_hash_value.')||' created by coe_load_sql_baseline.sql');
  plans :=
  DBMS_SPM.ALTER_SQL_PLAN_BASELINE (
    sql_handle      => sys_sql_handle,
    plan_name       => sys_plan_name,
    attribute_name  => 'description',
    attribute_value => description );
  DBMS_OUTPUT.PUT_LINE(plans||' plan(s) modified description: "'||description||'"');

  -- update plan_name of new sql_plan_baseline
  :plan_name := UPPER(TRIM('&&original_sql_id.')||'_'||TRIM('&&modified_sql_id.'));
  :plan_name := sys_plan_name; -- avoids ORA-38141: SQL plan baseline SQL_PLAN_64b0jqr2t1h3558b5ab4d does not exist
  IF :plan_name <> sys_plan_name THEN
    plans :=
    DBMS_SPM.ALTER_SQL_PLAN_BASELINE (
      sql_handle      => sys_sql_handle,
      plan_name       => sys_plan_name,
      attribute_name  => 'plan_name',
      attribute_value => :plan_name );
    DBMS_OUTPUT.PUT_LINE(plans||' plan(s) modified plan_name: "'||:plan_name||'"');
  END IF;

  -- drop baseline staging table for original sql (if one exists)
  BEGIN
    DBMS_OUTPUT.PUT_LINE('dropping staging table "STGTAB_BASELINE_'||UPPER(TRIM('&&original_sql_id.'))||'"');
    EXECUTE IMMEDIATE 'DROP TABLE STGTAB_BASELINE_'||UPPER(TRIM('&&original_sql_id.'));
  EXCEPTION
    WHEN OTHERS THEN
      DBMS_OUTPUT.PUT_LINE('staging table "STGTAB_BASELINE_'||UPPER(TRIM('&&original_sql_id.'))||'" did not exist');
  END;

  -- create baseline staging table for original sql
  DBMS_OUTPUT.PUT_LINE('creating staging table "STGTAB_BASELINE_'||UPPER(TRIM('&&original_sql_id.'))||'"');
  DBMS_SPM.CREATE_STGTAB_BASELINE (
    table_name  => 'STGTAB_BASELINE_'||UPPER(TRIM('&&original_sql_id.')),
    table_owner => '&&connected_user.' );

  -- packs new baseline for original sql
  DBMS_OUTPUT.PUT_LINE('packaging new sql baseline into staging table "STGTAB_BASELINE_'||UPPER(TRIM('&&original_sql_id.'))||'"');
  plans :=
  DBMS_SPM.PACK_STGTAB_BASELINE (
     table_name  => 'STGTAB_BASELINE_'||UPPER(TRIM('&&original_sql_id.')),
     table_owner => '&&connected_user.',
     sql_handle  => sys_sql_handle,
     plan_name   => :plan_name );
  DBMS_OUTPUT.PUT_LINE(plans||' pla(s) packaged');
END;
/

-- display details of new sql_plan_baseline
SET ECHO ON;
REM
REM SQL Plan Baseline
REM ~~~~~~~~~~~~~~~~~
REM
SELECT signature, sql_handle, plan_name, enabled, accepted, fixed--, reproduced (avail on 11.2.0.2)
  FROM dba_sql_plan_baselines WHERE plan_name = :plan_name;
SELECT description
  FROM dba_sql_plan_baselines WHERE plan_name = :plan_name;
SET ECHO OFF;
PRO
PRO ****************************************************************************
PRO * Enter &&connected_user. password to export staging table STGTAB_BASELINE_&&original_sql_id.
PRO ****************************************************************************
HOS exp &&connected_user. tables=&&connected_user..STGTAB_BASELINE_&&original_sql_id. file=STGTAB_BASELINE_&&original_sql_id..dmp statistics=NONE indexes=N constraints=N grants=N triggers=N
PRO
PRO If you need to implement this SQL Plan Baseline on a similar system,
PRO import and unpack using these commands:
PRO
PRO imp &&connected_user. file=STGTAB_BASELINE_&&original_sql_id..dmp tables=STGTAB_BASELINE_&&original_sql_id. ignore=Y
PRO
PRO SET SERVEROUT ON;;
PRO DECLARE
PRO   plans NUMBER;;
PRO BEGIN
PRO   plans := DBMS_SPM.UNPACK_STGTAB_BASELINE('STGTAB_BASELINE_&&original_sql_id.', '&&connected_user.');;
PRO   DBMS_OUTPUT.PUT_LINE(plans||' plan(s) unpackaged');;
PRO END;;
PRO /
PRO
SPO OFF;
HOS zip -m coe_load_sql_baseline_&&original_sql_id. coe_load_sql_baseline_&&original_sql_id..log STGTAB_BASELINE_&&original_sql_id..dmp coe_load_sql_baseline.log
HOS zip -d coe_load_sql_baseline_&&original_sql_id. coe_load_sql_baseline.log
WHENEVER SQLERROR CONTINUE;
SET DEF ON TERM ON ECHO OFF FEED 6 VER ON HEA ON LIN 80 PAGES 14 LONG 80 LONGC 80 TRIMS OFF TI OFF TIMI OFF SERVEROUT OFF NUM 10 SQLP SQL>;
SET SERVEROUT OFF;
UNDEFINE 1 2 3 original_sql_id modified_sql_id plan_hash_value
CL COL
PRO
PRO coe_load_sql_baseline completed.

 

Written by Carlos Sierra

June 24, 2014 at 10:32 am